Home
Class 10
MATHS
let x1, x2, x3be the roots of equation x...

let` x_1, x_2, x_3`be the roots of equation `x^3+3x+5=0`what is the value of the expression `(x_1+1/(x_1))(x_2+1/(x_2))(x_3+1/(x_3))` = ?

Text Solution

Verified by Experts

GIven
`x^2+3x+5`
so,`x_1+x_2+x_3=0`
`x_1x_2+x_2x_3+x_3x_1=3`
`x_1x_2x_3=-5`
so,L.H.S
=`((x_1^2+1)(x_2^2+1)(x_3^2+1))/(x_1x_2x_3)`
=`(((x_1x_2)^2+x_1+x_2+1)(x_3^2+1))/(x_1x_2x_3)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_(1),x_(2), x_(3) be roots of equation x^3 + 3x + 5 = 0 . What is the value of the expression (x_(1) + 1/x_(1))(x_(2)+1/x_(2)) (x_(3)+1/x_(3)) ?

Let x_1, x_2, x_3 be the roots of equation x^3-x^2+beta x+gamma=0 . If , x_1,x_2,x_3 are in A.P. then

Let X_1, X_2, x_3 be 3 roots of the cubic x^3 – X-1 = 0. Then the expression x_1(x_2 - X_3)^2 + x_2 (x_3 - x_1)^2 + x_3(x_1 - x_2)^2 equals a rational number.Find the absolute value of the number.

If x_1, x_2, and x_3 , are the positive roots of the equation x^3 - 6x^2 +3px -2p=0 , p in R then the value of sin^-1(1/x_1+1/x_2)+cos^-1(1/x_2+1/x_3)-tan^-1(1/x_3+1/x_1)

Let x_1 and x_2 be the real roots of the equation x^2 -(k-2)x+(k^2 +3k+5)=0 then the maximum value of x_1^2+x_2^2 is

If x_(1),x_(2),x_(3) are the roots of x^(3)+ax^(2)+b=0, the value of x_(2)x_(3),x_(1)x_(3),x_(1),x_(2)]|

Let x_1 , x_2 , be the roots of the equation x^2 - 3x +p=0 and let x_3 , x_4 be the roots of the equation x^2 - 12 x + q =0 if the numbers x_1 , x_2 , x_4 ( in order ) form an increasing G.P then

The value of x satisfying the equation (x-1)/(x)+(x-2)/(x)+(x-3)/(x)+...+(1)/(x)=3

If the roots x_(1),x_(2),x_(3) of the equation x^(3)+ax+a=0 (where a in R-{0} ) satisfy (x_(1)^(2))/(x_(2))+(x_(2)^(2))/(x_(3))+(x_(3)^(2))/(x_(1))=-8 , then find the value of a and the roots of the given cubic equation.