Home
Class 12
MATHS
Evaluate : ("lim")(xrarr2^+) ([x-2])/("...

Evaluate : `("lim")_(xrarr2^+)` `([x-2])/("log"(x-2))` , where [.] represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :(lim)_(x rarr2^(+))([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

lim_(xrarr pi//2)([x/2])/(log_e(sinx)) (where [.] denotes the greatest integer function)

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

The value of lim_(xrarr0)[(x)/(sinx)] , where [.] represents the greatest integer function,is

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

lim_(xrarr1^(+))(log_(sqrt2)sqrt2x)^(1/({x})) where [ ] represents greatest integer function is

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.