Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N`:`1/(3. 5)+1/(5. 7)+1/(7. 9)+...+1/((2n+1)(2n+3))=n/(3(2n+3))`.

Text Solution

Verified by Experts

Let, `p(n) = 1/(3. 5)+1/(5. 7)+1/(7. 9)+...+1/((2n+1)(2n+3))=n/(3(2n+3))`.
For , n=1
L.H.S = `1/3.5 = 1/15`
R.H.S = `1 / (3(2(1)+3) = 1/15`
...
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT|Exercise EXERCISE 4.1|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT|Exercise EXERCISE 7.2|5 Videos
  • PROBABILITY

    NCERT|Exercise EXERCISE 16.3|21 Videos

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in Nvdots(2n+7)<(n+3)^(2)

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+3)le(n+3)!

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+...+(1)/((3n-1)(3n+2))=(n)/((6n+4))=(n)/((6n+4))

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(1.4)+(1)/(4.7)+(1)/(7.10)+...+(1)/((3n-1)(3n+1))=(n)/((3n+1))

Prove the following by the principle of mathematical induction: 1+2+2^(7)=2^(n+1)-1 for all n in N

Prove the following by using the principle of mathematical induction for all n in Nvdots1+2+3+...+n<(1)/(8)(2n+1)^(2)

Prove the following by using the principle of mathematical induction for all n in Nvdotsn(n+1)(n+5) is a multiple of 3.

Prove the following by using the Principle of mathematical induction AA n in N 2^(3n-1) is divisble by 7.

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))

NCERT-PRINCIPLE OF MATHEMATICAL INDUCTION-EXERCISE 4.1
  1. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  2. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  3. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  4. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  5. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  6. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  7. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  11. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  12. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  13. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  14. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  15. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  16. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  17. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  18. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  19. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  20. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |