Home
Class 12
MATHS
If f(x) = e^(g(x)) and g (x) = int2 ^x d...

If `f(x) = e^(g(x))` and `g (x) = int_2 ^x dt/(1+t^4) ` then `f' (2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(tdt)/(1+t^(4)) then f'(2) has the value equal to: a.2/17 b.0 c.1 d.(2)/(5)

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(tdt)/(1+t^(4)), then find the value of f'(2)

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x)=5^(g(x)) and g(x)=int_(2)^(x^(2))(t)/(ln(1+t^(2))dt) ,then find the value of f'(sqrt(2))

If F(x)= int_x^(x^2)e^(-t^4) dt then find F^1(x) .

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

Consider the function f (x) and g (x), both defined from R to R f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, then minimum value of f (x) is:

If f(x)=(1)/(x^(2))int_(4)^(x)(4t^(2)-2f'(t)) dt,then f'(4) is equal to: