Home
Class 11
CHEMISTRY
Calculate the volue of O(2) at 1 atm and...

Calculate the volue of `O_(2)` at 1 atm and 273 K required for the complete combustion of 2.64 L of acetylene `(C_(2)H_(2))` at 1 atm and 273 K. `2C_(2)H_(2)"(g)"+5O_(2)"(g)"rarr4CO_(2)"(g)"+2H_(2)O(l)`

A

3.6 L

B

1.056 L

C

6.6 L

D

10 L

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of calculating the volume of \( O_2 \) required for the complete combustion of 2.64 L of acetylene \( (C_2H_2) \) at 1 atm and 273 K, we will follow these steps: ### Step 1: Write the Balanced Chemical Equation The balanced equation for the combustion of acetylene is: \[ 2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l) \] ### Step 2: Calculate the Moles of Acetylene Using the ideal gas law, we can calculate the number of moles of acetylene \( (C_2H_2) \): \[ n = \frac{PV}{RT} \] Where: - \( P = 1 \, \text{atm} \) - \( V = 2.64 \, \text{L} \) - \( R = 0.0821 \, \text{L atm K}^{-1} \text{mol}^{-1} \) - \( T = 273 \, \text{K} \) Substituting the values: \[ n_{C_2H_2} = \frac{(1 \, \text{atm})(2.64 \, \text{L})}{(0.0821 \, \text{L atm K}^{-1} \text{mol}^{-1})(273 \, \text{K})} \] Calculating this gives: \[ n_{C_2H_2} \approx 0.118 \, \text{moles} \] ### Step 3: Determine the Moles of Oxygen Required From the balanced equation, we see that 2 moles of \( C_2H_2 \) react with 5 moles of \( O_2 \). Therefore, the ratio of \( O_2 \) to \( C_2H_2 \) is: \[ \frac{5 \, \text{moles } O_2}{2 \, \text{moles } C_2H_2} \] To find the moles of \( O_2 \) needed: \[ n_{O_2} = n_{C_2H_2} \times \frac{5}{2} \] Substituting the value of \( n_{C_2H_2} \): \[ n_{O_2} = 0.118 \times \frac{5}{2} = 0.294 \, \text{moles} \] ### Step 4: Calculate the Volume of Oxygen Required Now we calculate the volume of \( O_2 \) using the ideal gas law again: \[ V = \frac{nRT}{P} \] Substituting the values: \[ V_{O_2} = \frac{(0.294 \, \text{moles})(0.0821 \, \text{L atm K}^{-1} \text{mol}^{-1})(273 \, \text{K})}{1 \, \text{atm}} \] Calculating this gives: \[ V_{O_2} \approx 6.589 \, \text{L} \] Rounding this to two decimal places, we get: \[ V_{O_2} \approx 6.6 \, \text{L} \] ### Final Answer The volume of \( O_2 \) required for the complete combustion of 2.64 L of acetylene at 1 atm and 273 K is approximately **6.6 liters**. ---

To solve the problem of calculating the volume of \( O_2 \) required for the complete combustion of 2.64 L of acetylene \( (C_2H_2) \) at 1 atm and 273 K, we will follow these steps: ### Step 1: Write the Balanced Chemical Equation The balanced equation for the combustion of acetylene is: \[ 2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l) \] ...
Promotional Banner

Topper's Solved these Questions

  • GASEOUS STATE

    NARENDRA AWASTHI|Exercise Level 1 (Q.31 To Q.60)|1 Videos
  • GASEOUS STATE

    NARENDRA AWASTHI|Exercise Level 1 (Q.121 To Q.150)|1 Videos
  • ELECTROCHEMISTRY

    NARENDRA AWASTHI|Exercise Level 3 - Subjective Problems|1 Videos
  • IONIC EEQUILIBRIUM

    NARENDRA AWASTHI|Exercise Exercise|196 Videos

Similar Questions

Explore conceptually related problems

How many litres of oxygen at 1 atm and 273 K will be required to burn completely 2.2 g of propane (C_3H_8) ?

For the equilibrium H_(2)O(l) iff H_(2)O(g) at 1 atm and 298 K

For a process H_(2)O(s) rarr H_(2)O(l) at 273 K

Use the following data to calculate the molar enthalpy of combustion of ethane , C_(2)H_(6) : 2C_(2)H_(2)(g)+5O_(2)(g)to4CO_(2)(g)+2H_(2)O(l), DeltaH=-2511KJ//mol C_(2)H_(2)(g)+2H_(2)(G)to C_(2)H^(6)(g), DeltaH=-311KJ//mol 2H_(2)(g)+O_(2)(g)to 2H_(2)O(l), DeltaH=-484KJ//mol

H_(2)(g)+(1)/(2)O_(2)(g)rarr2H_(2)O(l), DeltaH =- 286 kJ 2H_(2)(g)+O_(2)(g)rarr2H_(2)O(l)……………kJ(+-?)

Diborane is a potential rocket fuel which undergoes combustion according to the reaction, B_(2)H_(6) (g) + 3O_(2) (g) rarr B_(2) O_(3) (s) + 3H_(2) O (g) From the following data, calculate the enthalpy change for the combustion of diborane: (i) 2 B (s) + ((3)/(2)) O_(2) (g) rarr B_(2) O_(3) (s) , Delta H = 0 1273 k J//mol (ii) H_(2) (g) + ((1)/(2)) O_(2) (g) rarr H_(2) O (l), Delta H = -286 kJ//mol (iii) H_(2) O (l) rarr H_(2)O (g) Delta H = 44 kJ//mol (iv) 2B (s) + 3H_(2) (G) rarr B_(2) H_(6) (g), Delta H = 36 kJ//mol