Home
Class 12
MATHS
[x-y+z=4],[x-2y-2z=9],[2x+y+3z=1]...

[x-y+z=4],[x-2y-2z=9],[2x+y+3z=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3):}] and B=[{:(-4 " "4" "4),(-7 " "1 " "3),(5 " "-3 " "-1):}] , find AB and use this result in solving the following system of equation x-y+z=4, x-2y-2z=9 2x+2y+3z=1

Solve the following system of equations: x-y+z=4,quad x-2y-2z=9,quad 2x+y+3z=1

Solve x-y+z=4 , x+y+z=2 , 2x+y-3z=0

Given A = [(1,-1,1),(1,-2,-2),(2,1,3)] and B = [(-4,4,4),(-7,1,3),(5,-3,-1)] , find AB and use this result I solving the following system of equations : x - y + z = 4, x - 2y -2z = 9 and 2x + y + 3z = 1

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)