Home
Class 12
MATHS
int0^pi sin(2kx)/sinkx dx...

`int_0^pi sin(2kx)/sinkx dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If k is an integer, evaluate int_0^pi (sin2kx)/sinxdx

If k is an integer, evaluate int_0^pi (sin2kx)/sinxdx

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

The value of int_0^pi (sin(1+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

int_0^(pi/2) sin^(2)x dx =

int_0^(pi/2) sin x sin 2x dx

int_0^pi (x sin x)/(1+sin x) dx=pi/2 (pi-2)

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

int_0^(2pi)(sin2x)dx