Home
Class 12
MATHS
23. The value of lim(h->0)(1/(h(8+h)^(1/...

23. The value of `lim_(h->0)(1/(h(8+h)^(1/3)) - 1/(2h))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

23.The value of lim_(h rarr0)((1)/(h(8+h)^((1)/(3)))-(1)/(2h)) equals

Evaluate lim_(hto0) [(1)/((h)(8+h)^(1/3))-(1)/(2h)].

Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h) is equal to

Evaluate the limit: ("lim")_(h -> 0)[1/(h(8+h)^(1/3))-1/(2h)]

Evaluate the limit: ("lim")_(h->0)[1/(8+h)^(1/3)-1/(2h)]

The value of lim _(hto0) 1/h[(1)/(""^(3)sqrt(8+h))-1/2] is-

Evaluate the limit: ("lim")_(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

The value of lim_(hto0) (ln(1+2h)-2ln (1+h))/(h^2) , is

Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim_(h->0) (f(1-h)-f(1))/(h^3+3h)