Home
Class 12
MATHS
Find inte^x(tan^(- 1)x+1/(1+x^2))dx...

Find `inte^x(tan^(- 1)x+1/(1+x^2))dx`

Text Solution

Verified by Experts

`I=int e^x(tan^(-)x+1/(1+x^2))dx`
LEt `f(x)=tan^(-1)x`
then`f^'(x)=tan^(-1)x`
Now `I=int e^x [f(x)+f'(x)]dx`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find int e^x(tan^-1x + 1/(1+x^2))dx

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

Evaluate the following integrals: inte^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

Evaluate: int e^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

Evaluate the Integral: inte^(x)(tan^(-1)x+(1)/(1+x^(2)))dx .

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx