Home
Class 12
MATHS
" o "9." tan "^(-1)(x)/(sqrt(a^(2)-x^(2)...

" o "9." tan "^(-1)(x)/(sqrt(a^(2)-x^(2))),|x|

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

int(1+tan^(2)x)/(sqrt(tan^(2)x+3))

the derivation of tan ^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))

Prove that "tan"^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/(4)+1/(2)"cos"^(-1)x^(2) .

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))