Home
Class 11
MATHS
If the chord joining the points t1and t2...

If the chord joining the points `t_1`and `t_2` on the parabola `y^2 = 4ax` subtends a right angle at its vertex then `t_2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the chord joining the points t_1 and t_2 on the parabola y^2 = 4ax subtends a right angle at its vertex then t_1t_2=

If a normal chord at a poit t( ne 0) on the parabola y^(2) = 9x subtends a right angle at its vertex, then t =

If the normal chord at a point t on the parabola y^(2)=4ax subtends a right angle at the vertex, then a value sqrt(2)t=

If the normal chord at a point t on the parabola y^(2)=4ax subtends a right angle at the vertex, then a value sqrt(2)t=

If a normal chord at a point t(!=0) on the parabola y^(2)=9x subtends a right angle at its vertex, then t=

If a normal chord of a puint on the parabola y^(2) = 4ax , subtends a right angle at the vertex, then t =

If a normal chord at a point t(t!=0 ) on the parabola y^(2)=9x subtends a right angle at its vertex,then t=

If the normal chord at t on y^(2)=4ax subtends a right angle at vertex then t^(2)=

If the normal chord drawn at the point t to the parabola y^(2) = 4ax subtends a right angle at the focus, then show that ,t = pmsqrt2