Home
Class 11
MATHS
Let S1 = 4+6/3+8/3^2+10/3^3+...+oo and S...

Let `S_1 = 4+6/3+8/3^2+10/3^3+...+oo` and `S_2 =sum_(n=1)^oo 1/((3n+1)(3n+4))`, then the value of the `S_1/(10 \ S_2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(0)^(oo)(1)/((3n+1)(3n+2))

If S=sum_(n=2)^oo (3n^2+1)/(n^2-1)^3 then 9/S=

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

The value of sum_(n=1)^(oo)(4n-2)/(3^(n))

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

If S_1=Sigman, S_2=Sigman^2,S_3=Sigma n^3, "then the value of " lim_(n to oo) (S_1(1+(S_3)/(8)))/(S_2^2) is equal to