Home
Class 12
MATHS
if y=x^x , then prove (d^2y)/(dx^2)-1...

if `y=x^x` , then prove `(d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^(x) , then prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^(x) , prove that: (d^(2)y)/(dx^(2))-1/y((dy)/(dx))^(2) - y/x=0

If y=x^x prove that (d^2y)/(dx^2)-1/(y)(dy/dx)^2-y/x=0

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^(x) , prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0 .

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,