Home
Class 13
MATHS
" Maximum value of "(sqrt(-3+4x-x^(2))+4...

" Maximum value of "(sqrt(-3+4x-x^(2))+4)^(2)+(x-5)^(2)" (where "1<=x<=3" ) is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Maximum value of (sqrt(-3+4x-x^(2))+4)^(2)+(x-5)^(2)(where1<=x<=3) is

Statement 1: The maximum value of (sqrt(-3+4x-x^(2))+4)^(2)+(x-5)^(2)(where1<=x<=3) is 36 Statement 2: The maximum distance between the point (5,-4) and the point on the circle (x-2)^(2)+y^(2)=1 is 6

Prove that The maximum value of (sqrt(-3+4x-x^2)+4)^2+(x-5)^2(w h e r e1lt=xlt=3) i s 36.

The maximum value of 2-3x-4x^2

The maximum value of (1)/(4x^(2)+2x+1) is

The maximum value of 4x-x^2-2 is-

The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^(2))/(x^(4)+2x^(2)+3)) is

int_(1)^(2)((x^(2)-1)dx)/(x^(3)*sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u are ( in their blowest form.Find the value of )/(sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where of ((1000)u)/(v)

For x in R , the maximum value of sqrt(x^4 - 5x^2 – 8x + 25) - sqrt( x^4 – 19x^2 + 100) is