Home
Class 12
MATHS
" If "f[1,oo)rarr[1,oo)" is defined by "...

" If "f[1,oo)rarr[1,oo)" is defined by "f(x)=2^(x(x-1))" then "f^(-1)(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f : [1, oo) rarr [1, oo) is defined by f(x) = 2^(x(x - 1)) , then f^(-1) (x) is a) ((1)/(2))^(x(x-1)) b) (1)/(2) (1 - sqrt(1 + 4 log_(2)x)) c) (1)/(2) sqrt(1 + 4 log_(2)x) d) (1)/(2) [1 + sqrt(1 + 4 log_(2)x)]

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

If f:[1,oo) to [1,oo) is defined by f(x) = 2^(x(x-1)) then find f^(-1)(x) .

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

If the function f: [2, oo) rarr [-1, oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=