Home
Class 12
MATHS
tan^(-1)((4)/(7))+tan^(-1)((1)/(7))=tan^...

`tan^(-1)((4)/(7))+tan^(-1)((1)/(7))`=`tan^(-1)((7)/(9))`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((4)/(7))-tan^(-1)((1)/(5))=tan^(-1)((1)/(3))

prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

Prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

2Tan^(-1)(1)/(3)+tan^(-1)((1)/(7))=

tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))

Prove that: tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))