Home
Class 11
MATHS
If (1+x)^n=sum(r=0)^n Cr x^r , then prov...

If `(1+x)^n=sum_(r=0)^n C_r x^r ,` then prove that `C_1+2c_2+3C_1++n C_n=n2^(n-1)dot` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), then prove that C_(1)+2c_(2)+3C_(1)+...+nC_(n)=n2^(n-1)...

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(1)+2C_(2)+3C_(3)+....+nC_(n)=n2^(n-1)

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+2C_(1)+3C_(2)+.....+(n+1)C_(n)=2^(n-1)(n+2)

If (1+x)^n=sum_(r=0)^n C_rx^r then prove that sum_(r=0)^n (C_r)/((r+1)2^(r+1))=(3^(n+1)-2^(n+1))/((n+1)2^(n+1))

If (1+x)^(n) = overset(n)underset(r=0)Sigma C_(r)x^(r ) , then prove that C_(1)+2C_(2)+3C_(3)+…..+nC_(n)=n2^(n-1) .

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+(C_(1))/(2)+......+(C_(n))/(n+1)=2

If (1+2x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,then a_r is a. (.^nC_2)^2 b. .^n C_r .^n C_(r+1) c. .^(2n) C_r d. .^(2n) C_(r+1)

If (1+x)^n=sum_(r=0)^n^n C_r , show that C_0+(C_1)/2++(C_n)/(n+1)=(2^(n+1)-1)/(n+1) .