Home
Class 12
MATHS
Let g(x)=f(x)+f(1-x)a n df^(x)>0AAx in (...

Let `g(x)=f(x)+f(1-x)a n df^(x)>0AAx in (0,1)dot` Find the intervals of increase and decrease of `g(x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=f(x)+f(1-x) and f''(x)>0AAx in (0,1)dot Find the intervals of increase and decrease of g(x)dot

Let g(x)=f(x)+f(1-x) and f "(x)>0AAx in (0,1)dot Find the intervals of increase and decrease of g(x)dot

Let g(x)=f(x)+f(1-x) and f'(x)>0AA x in(0,1) Find the intervals of increase and decrease of g(x)

Let g(x)=f(x)+f(1-x) and f''(x)>0AAx in (0,1)dot Find the intervals of increase and of g(x)dot

Let g(x)=f(x)+f(1-x) and f '' (x) gt 0 AA x in (0, 1) . Find the intervals of increase and decrease of g(x) -

Let g(x)=f(x)+f(1-x) and f''(x)>0AAx in (0,1)dot Find the intervals of decrease of g(x)dot

Let g(x)=f(logx)+f(2-logx)a n df^(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=f(logx)+f(2-logx)a n df''(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=f(logx)+f(2-logx)a n df''(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=f(log x)+f(2-log x) and f'(x)<0AA x in(0,3) Then find the interval in which g(x) increases.