Home
Class 12
MATHS
Prove that 2xtan^(- 1)x >ln(1+x^2), x >0...

Prove that `2xtan^(- 1)x >ln(1+x^2), x >0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (x)/(1+x)>ln(1+x) 0

Prove that ln(1+x) 0.

Prove that ln(1+x) 0.

Prove that ln(1+x) 0.

Prove that d/(dx)[2xtan^-1x-log(1+x^2)]=2tan^-1x

Prove that (d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.

int \ (2xtan^(- 1)x^2)/(1+x^4)dx

Prove that ln(1+x)

Prove that,x^(2)-1>2x ln x>4(x-1)-2ln x for x>1

Find the derivatives w.r.t. x : 2xtan^(-1)x -log(1+x^(2))