Home
Class 11
MATHS
(a^2-b^2)/(a-b)-(a^3-b^3)/(a^2-b^2)...

`(a^2-b^2)/(a-b)-(a^3-b^3)/(a^2-b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2a+3b)(a-b)=2a^(2)-3b^(2)

Suppose a,b are two non zero numbers. Let Delta=|(2,a+b,a^(2)+b^(2)),(a+b,a^(2)+b^(2),a^(3)+b^(3)),(a^(2)+b^(2),a^(3)+b^(3),a^(4)+b^(4))| then Delta is equal to

Formulae for the sum and differences of cubes (i)a^(3)+b^(3)=(a+b)(a^(2)-ab+b^(2))(ii)a^(3)-b^(3)=(a-b)(a^(2)+ab+b^(2))

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

Simplify: ((a^2-b^2)+(b^2-c^2)^3+(c^2-a^2)^3)/((a-b)^3+(b-c)^3+(c-a)^3)

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

The product (a+b)(a-b)(a^(2)-ab+b^(2))(a^(2)+ab+b^(2)) is equal to: a^(6)+b^(6)(b)a^(6)-b^(6)(c)a^(3)-b^(3)(d)a^(3)+b^(3)