Home
Class 10
MATHS
Prove the following identities: sin^4A-...

Prove the following identities: `sin^4A-cos^4A=sin^2A-cos^2A=2sin^2A-1=1-2cos^2A`

Text Solution

AI Generated Solution

To prove the identity \( \sin^4 A - \cos^4 A = \sin^2 A - \cos^2 A = 2\sin^2 A - 1 = 1 - 2\cos^2 A \), we will start from the left-hand side and show that it equals the right-hand side. ### Step 1: Start with the left-hand side We begin with the expression: \[ \sin^4 A - \cos^4 A \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA|Exercise All Questions|361 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

sin^4A-cos^4A=2sin^2A-1=1-2cos^2A=sin^2A-cos^2A

Prove the following identities: sin^(4)A+cos^(4)A=1-2sin^(2)A cos^(2)A

Prove the following identities: cos^(4)A-cos^(2)A=sin^(4)A-sin^(2)A

Prove the following identities: sin^(6)A+cos^(6)A=1-3sin^(2)A cos^(2)A

Prove the following identities: (sin^(2)A)/(cos^(2)A)+(cos^(2)A)/(sin^(2)A)=(1)/(sin^(2)A cos^(2)A)-2

Prove the following identities: (sin+cos A)/(sin A-cos A)+(sin-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2cos^(2)A)

Prove the following cos^(4)A-sin^(4)A+1=2cos^(2)A

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A

Prove the following identities: (cos A)/(1-tan A)+(sin^(2)A)/(sin A-cos A)=sin A+cos A

Prove the following identities: (cos A)/(1-sin A)+(sin A)/(1-cos A)+1=(sin A cos A)/((1-sin A)(1-cos A))((1+cot A+tan A)(sin A-cos A)/(sec^(3)A-cos ec^(3)A)=sin^(2)A cos^(2)A