Home
Class 11
MATHS
" If "|[a,-b,=sqrt(2)]" then calculate t...

" If "|[a,-b,=sqrt(2)]" then calculate the value of "|hat a+sqrt(3)hat b|

Promotional Banner

Similar Questions

Explore conceptually related problems

If |hata-hatb|=sqrt(2) then calculate the value of |hat a+sqrt(3)hatb| .

If |hata-hatb|=sqrt(2) then calculate the value of |hat a+sqrt(3)hatb| .

If |hata-hatb|=sqrt(2) then calculate the value of |hat a+sqrt(3)hatb| .

If hat a,hat b,hat c are unit vectors satisfying hat a-sqrt(3)hat b+hat c=0 then the angle between the vectors hat a and hat c is (A) (pi)/(4) (B) (pi)/(3) (C) (pi)/(6) (D) (pi)/(2)

the magnitude of the projection vectors of the vector alphahat i+betahat j on sqrt(3)hat i+hat j is sqrt(3) and if alpha=2+sqrt(3)beta then the possible values of | alpha| are

If in a Delta ABC,A=(0,0),B=(3,3sqrt(3)),C-=(-3sqrt(3),3) then the vector of magnitude sqrt(2) units directed along AO, where O is the circumcentre of ABC is (1-sqrt(3))hat i+(1+sqrt(3))hat j b.(1+sqrt(3))hat i+(1-sqrt(3))hat j c.(1+sqrt(3))hat i+(sqrt(3)-1)hat j d.none of these

If in a "Delta"A B C ,\ A=(0,0),\ B=(3,3sqrt(3)), C-=(-3sqrt(3),3) then the vector of magnitude 2sqrt(2) units directed along A O ,\ w h e r e\ O is the circumcentre of A B C is a. (1-sqrt(3)) hat i+(1+sqrt(3)) hat j b. (1+sqrt(3)) hat i+(1-sqrt(3)) hat j c. (1+sqrt(3)) hat i+(sqrt(3)-1) hat j d. none of these

Let vec a=2 hati+hat j+ hat k , vec b=hat i+2hat j- hatk and a unit vector vec c be coplanar. If vec c is perpendicular to vec a , then vec c is a. 1/(sqrt(2))(-hat j+hat k) b. 1/(sqrt(3))(-hat i-hat j-hat k)"" c. 1/(sqrt(5))(-hat k-2 hat j) d. 1/(sqrt(3))(hat i-hat j- hat k)

Let vec a=2 hati+hat j+ hat k , vec b=hat i+2hat j- hatk and a unit vector vec c be coplanar. If vec c is perpendicular to vec a , then vec c is a. 1/(sqrt(2))(-hat j+hat k) b. 1/(sqrt(3))(-hat i-hat j-hat k)"" c. 1/(sqrt(5))(-hat k-2 hat j) d. 1/(sqrt(3))(hat i-hat j- hat k)

Two adjacent sides of a parallelogram A B C D are 2 hat i+4 hat j-5 hat k and hat i+2 hat j+3 hat k . Then the value of |A CxxB D| is a. 20sqrt(5) b. 22sqrt(5) c. 24sqrt(5) d. 26sqrt(5)