Home
Class 12
MATHS
[" 26.we "r^(2)-a^(2)cos^(2)0+b^(2)sin^(...

[" 26.we "r^(2)-a^(2)cos^(2)0+b^(2)sin^(2)theta" ,à ters "4190" ? "],[qquad [(d^(2)p)/(dq^(2))+p=(a^(2)b^(2))/(p^(3))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta then

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta , then show that : p+(d^(2)p)/(d theta^(2))=(a^(2)b^(2))/p^(3) .

If p^(2)=a^(2)cos^(2)theta+b^(2)sin^(2)theta , show that, p+(d^(2)p)/(d theta^(2))=(a^(2)b^(2))/(p^(3)) .

If p^(2) = a^(2) cos^(2) theta + b^(2) sin^(2)theta , prove that p + (d^(2p)/(d theta^(2))) =(a^(2)b^(2))/p^(3)

if p^(2)=a^(2)cos theta+b^(2)sin^(2)theta then prove that (p+(d^(2)p)/(d theta^(2)))=(a^(2)b^(2))/(p^(3))

x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(alpha^(2)sin^(2)alpha+b^(2)cos^(2)alpha) then x^(2)=alpha^(2)+b^(2)+2sqrt(p(a^(2)+b^(2))-p^(2)) , where p is equal to

x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(a^(2)sin^(2)alpha+b^(2)cos^(2)alpha) then x^(2)=a^(2)+b^(2)+2sqrt(p(a^(2)+b^(2))-p^(2)), where p can be is equal to

x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(alpha^(2)sin^(2)alpha+b^(2)cos^(2)alpha) then x^(2)=alpha^(2)+b^(2)+2sqrt(p(a^(2)+b^(2))-p^(2)) , where p is equal to

If p=a cos^(2)theta sin theta and q=a sin^(2)theta cos theta then (((p^(2)+q^(2))^(3))/(p^(2)q^(2)) is

int_ (0) ^ ((pi) / (2)) sin theta cos theta (a ^ (2) sin ^ (2) theta + b ^ (2) cos ^ (2) theta) ^ ((1) / ( 2)) d theta = ((1) / (3)) ((a ^ (2) + ab + b ^ (2)) / (a + b))