Home
Class 9
MATHS
(sqrt5+sqrt3)/(sqrt5-sqrt3)=...

`(sqrt5+sqrt3)/(sqrt5-sqrt3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalise the denominator of the following (i) 2/(3sqrt3) , (ii) sqrt40/sqrt3 ,(iii) (3+sqrt2)/(4sqrt2) (iv) 16/(sqrt41-5) ,(v) (2+sqrt3)/(2-sqrt3) , (vi) sqrt6/(sqrt2+sqrt3) (vii) (sqrt3+sqrt2)/(sqrt3-sqrt2) ,(viii) (3sqrt5+sqrt3)/(sqrt5-sqrt3) , (ix) (4sqrt3+5sqrt2)/(sqrt48+sqrt18)

Simplify (sqrt5 - sqrt3)(sqrt5 + sqrt 3)

(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

simplify (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

If 2sqrt(x)=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then the value of x is :

x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) then find x^(2)+y^(2)=?

If x=((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) and y=((sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))), find the value of (x^(2)+y^(2))