Home
Class 12
MATHS
" If "xy log(x+y)=1p*T*(dy)/(dx)=-(y(x^(...

" If "xy log(x+y)=1p*T*(dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

(dy)/(dx)=(y^(2)-x)/(xy+y)

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

if x=y log(xy) then (dx)/(dy)=

(dy)/(dx)=(x^2y+y)/(xy^2+x)

If log(x+y)=log(xy)+a,"show that"(dy)/(dx)=-(y^(2))/(x^(2))

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

(1-xy+x^(2)y^(2))dx=x^(2)dy