Home
Class 12
MATHS
x=(a^(2)+)/(1+t^(2)),y=(1-t^(2))/(1+t^(2...

x=(a^(2)+)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

Show that the point (x,y) given by x=(2at)/(1+t^(2)) and y=((1-t^(2))/(1+t^(2))) lies on a circle for all real values of t such that -1<=t<=1 where a is any given real number.