Home
Class 11
MATHS
argbar(z)=2 pi-arg z...

argbar(z)=2 pi-arg z

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that arg. bar z =2 pi- arg. z .

If -pi

The value of sqrt({arg(z)+arg(-bar(z))-2 pi}{arg(-z)+arg(bar(z))})AA z=x+iy,x,y>0 is

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arga(4z_(1))-arg(5z_(2))=pi, " then " abs(z_(1)/z_(2)) is equal to

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arga(4z_(1))-arg(5z_(2))=pi, " then " abs(z_(1)/z_(2)) is equal to

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) gt 0 , then arg (-z)-arg(z) is equal to

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) lt 0 , then arg (-z)-arg(z) is equal to

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) gt 0 , then arg (-z)-arg(z) is equal to

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) gt 0 , then arg (-z)-arg(z) is equal to

Show that arg. overline(z)=2pi-arg.z.