Home
Class 11
MATHS
int(0)^(oo)(x*ln x)/((1+x^(2))^(2))dx=...

int_(0)^(oo)(x*ln x)/((1+x^(2))^(2))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(oo)(x log x)/((1+x^(2))^(2))dx is 0(b)log7(c)5log13(d) none of these

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

int_(0)^(oo) (ln x)/(x^(2)+a^(2))dx=

If a,b>0 and int_(0)^(oo)(ln(bx))/(x^(2)+a^(2))dx=(pi)/(2a) then the value of (ab) is

If a,b>0 and int_(0)^(oo)(ln(bx))/(x^(2)+a^(2))dx=(pi)/(2a) then the value of (ab) is

The value of integral int_0^(oo) (x log x)/((1 + x^2)^2) dx is :

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=