Home
Class 12
MATHS
If |z| =1 and w=(z-1)/(z+1) (where z !=...

If `|z| =1 ` and `w=(z-1)/(z+1)` (where `z != -1`) then `Re(w)` is (A) 0 (B) `-1/|z+1|^2` (C) `|z/(z+1)| 1/|z+1|^2` (D) `sqrt2/|z+1|^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is

If |z|=1 and w=(z-1)/(z+1) (where z ne -1 ), then Re (w) is :

If |z|=1 and omega=(z-1)/(z+1) (where z in -1 ), then Re (omega) is

If |z|=1 and w=(z-1)/(z+1) (where z!=-1) then Re(w) is (A) 0(B)-(1)/(|z+1|^(2))(C)|(z)/(z+1)|(1)/(|z+1|^(2))(D)(sqrt(2))/(|z+1|^(2))

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then Re(w) is 0(b)(1)/(|z+1|^(2))|(1)/(z+1)|,(1)/(|z+1|^(2))(d)(sqrt(2))/(|z|1|^(2))

If abs(z)= 1 and omega = frac{z-1}{z+1} (where z != -1 ), the Re(omega) is

If |(z-1)/(z-4)|=2 and |(w-4)/(w-1)|=2 , (where z,w in C ) .Then the value of |z-w|_(max)+|z-w|_(min)