Home
Class 12
CHEMISTRY
Calculate the lattice enthalpy of MgBr(2...

Calculate the lattice enthalpy of `MgBr_(2)` from the given date:
`{:(Mg(s)+Br_(2)(l)rarrMgBr_(2)(s),,Delta_(f)H^(@)=-524 kJ mol^(-1)),(Mg(s)rarrMg(g),,Delta_(1)H^(@)=+148 kJ mol^(-1)),(Mg(g)rarrMg^(2+)(g)+2e^(-),,Delta_(2)H^(@)=+2187 kJ mol^(-1)),(Br_(2)(l)rarrBr_(2)(g),,Delta_(3)H^(@)=+31 kJ mol^(-1)),(Br_(2)(g)rarr2Br(g),,Delta_(4)H^(@)=+193 kJ mol^(-1)),(2Br(g)+2e^(-)rarr2Br(g),,Delta_(5)H^(@)=-662 kJ mol^(-1)):}`
Strategy : The thermochemical equation corresponding to lattice enthalpy of `MgBr_(2)` is
`{:(Mg^(2+)(g)+2Br^(-)(g)rarrMgr_(2)(s),,,Delta_("Lattice")H^(@)=?):}`
Add the last five thermochemical equations to the thermochemical equation corresponding to lattice enthalpy to get the thermochemical equation for the formation of `MgBr_(2) (s)` from its constituent element. Finally, calculate `Delta_(Lattice) H^(@)`, using the concept of Hess's law.

Text Solution

Verified by Experts

Born-Haber cycle for the calculation of lattice enthalpy of `Mg Br _(2)` is shown below:

`Delta _(r) H ^(Θ) = Delta H _(1) ^(Θ) + Delta _(2) ^(Θ) + Delta H _(3)^(Θ) + Delta H _(4) ^(Θ) + Detla H_(5) ^(o+) + Delta H _(6) ^(Θ)- 524 = 148 + 31+193+ 2187+2(-131)+ Delta H _(6) ^(Θ) Delta H _(0) ^(Θ) =-2821 kJ mol ^(-1)`
Hence lattice enthalpy `=- Delta H _(0) ^(Θ) =+2821 kJ mol ^(-1)`
`i.e., Mg B r_(2) (s) + underset(("lattice enthalpy of " MgBr _(2)))(2821kJ) to Mg ^(2+) (g) + 2Br ^(-) (g)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the lattice enthalpy of MgBr_(2) from the given date: {:(Mg(s)+Br_(2)(l)rarrMgBr_(2)(s),,Delta_(f)H^(@)=-524 kJ mol^(-1)),(Mg(s)rarrMg(s),,Delta_(1)H^(@)=+148 kJ mol^(-1)),(Mg(g)rarrMg^(2+)(g)+2e^(-),,Delta_(2)H^(@)=+2187 kJ mol^(-1)),(Br_(2)(l)rarrBr_(2)(g),,Delta_(2)H^(@)=+2187 kJ mol^(-1)),(Br_(2)(l)rarrBr_(2)(g),,Delta_(3)H^(@)=+31 kJ mol^(-1)),(2Br(g)+2e^(-)rarr2Br(g),,Delta_(5)H^(@)=-662 kJ mol^(-1)):} Strategy : The thermochemical equation corresponding to lattice enthalpy of MgBr_(2) is {:(Mg^(2+)(g)+2Br^(-)(g)rarrMgr_(2)(s),,,Delta_("Lattice")H^(@)=?):} Add the last five thermochemical equations to the thermochemical equation corresponding to lattice enthalpy to get the thermochemical equation for the formation of MgBr_(2) (s) from its constituent element. Finally, calculate Delta_(Lattice) H^(@) , using the concept of Hess's law.

Calculate the standard enthalpy of formation of CH_(3)OH(l) from the following data: CH_(3)OH(l)+3/2O_(2)(g) rarr CO_(2)(g)+2H_(2)O(l), …(i), Delta_(r)H_(1)^(Θ)=-726 kJ mol^(-1) C(g)+O_(2)(g) rarr CO_(2)(g), …(ii), Delta_(c )H_(2)^(Θ)=-393 kJ mol^(-1) H_(2)(g)+1/2O_(2)(g) rarr H_(2)O(l), ...(iii), Delta_(f)H_(3)^(Θ)=-286 kJ mol^(-1)

Calculate enthalpy of formation of methane (CH_4) from the following data : (i) C(s) + O_(2)(g) to CO_(2) (g) , Delta_rH^(@) = -393.5 KJ mol^(-1) (ii) H_2(g) + 1/2 O_(2)(g) to H_(2)O(l) , Deta_r H^(@) = -285.5 kJ mol^(-1) (iii) CH_(4)(g) + 2O_(2)(g) to CO_(2)(g) + 2H_(2)O(l), Delta_(r)H^(@) = -890.3 kJ mol^(-1) .