Home
Class 12
CHEMISTRY
Calculate DeltaG^(Theta) for the followi...

Calculate `DeltaG^(Theta)` for the following reaction:
`CO(g) +((1)/(2))O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.84 kJ`
Given,
`S_(CO_(2))^(Theta)=213.8 J K^(-1) mol^(-1), S_(CO(g))^(Theta)= 197.9 J K^(-1) mol^(-1), S_(O_(2))^(Theta)=205.0 J K^(-1)mol^(-1)`,

Text Solution

Verified by Experts

`Delta S^(@)=sum S_(("products"))^(@)-sum S_(("reactants"))^(@)=[Delta S_(CO_(2))^(@)]-[Delta S_(CO)^(@)+(1)/(2)S_(O_(2))^(@)]=213.8-[197.9 +(1)/(2)205]=-86.6 JK^(-1)`
According to Gibbs - Helmholtz equation,
`Delta G^(@)=Delta H^(@)-T Delta S^(@)`
`=-282.84-298xx(-86.6xx10^(-3))`
`=-282.84+25.87`
`=-257.033 kJ`
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the change in entropy for the following reaction 2CO(g) +O_(2)(g) rarr 2CO_(2)(g) Given: S_(CO)^(Theta)(g)=197.6 J K^(-1)mol^(-1) S_(O_(2))^(Theta)(g)=205.03 J K^(-1)mol^(-1) S_(CO_(2))^(Theta)(g)=213.6 J K^(-1)mol^(-1)

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the entropy change for the following reaction H_(2)(g) +CI_(2)(g) rarr 2HCI (g) at 298 K Given S^(Theta)H_(2) = 131 J K^(-1) mol^(-1), S^(Theta)CI_(2) = 233 J K^(-1) mol^(-1) , and S^(Theta) HCI = 187 J K^(-1) mol^(-1)

Calculate Delta_(r)S_(m)^(Theta) for the reaction: 4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s) Given that S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1) , S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1) and S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1) .

Calculated the equilibrium constant for the following reaction at 298K : 2H_(2)O(l) rarr 2H_(2)(g) +O_(2)(g) Delta_(f)G^(Theta) (H_(2)O) =- 237.2 kJ mol^(-1),R = 8.314 J mol^(-1) K^(-1)

Calculate the standard free energy change for the reaction : H_(2)(g) + I_(2)(g) to 2HI(g) DeltaH^(@) = 51.9 kJ "mol"^(-1) Given : S^(@)(H_(2)) = 130.6 J K^(-1) "mol"^(-1) S^(@)(I_(2)) = 116.7 J K^(-1) "mol"^(-1) and S^(@)(HI) = 206.3 J K^(-1) "mol"^(-1) .

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)

Calculate the entropy changes for the following reactions : (i) 2CO(g) + O_(2)(g) to 2CO_(2)(g) (ii) 2H_(2)(g) + O_(2)(g) to 2H_(2)O(l) Entropies of different compounds are : CO(g) = 197.6 J K^(-1) "mol"^(-1), O_(2)(g) = 205.03 J K^(-1) "mol"^(-1) CO_(2)(g) = 213.6 JK^(-1) "mol"^(-1), H_(2)(g) = 130.6 J K^(-1) "mol"^(-1) H__(2)O(l) = 69.96 J K^(-1) "mol"^(-1)

What is the equilibrium constant K_(c) for the following reaction at 400K ? 2NOCI(g) hArr 2NO(g) +CI_(2)(g) DeltaH^(Theta) = 77.2 kJ mol^(-1) and DeltaS^(Theta) = 122 J K^(-1) mol^(-1) at 400K .