Home
Class 12
CHEMISTRY
The solubility of Sb(2)S(3) in water is...

The solubility of `Sb_(2)S_(3)` in water is `1.0 xx 10^(-5) ` mol/letre at 298K. What will be its solubility product ?

A

`108 xx 10^(-25)`

B

`1.0 xx 10^(-25)`

C

`144 xx 10^(-25)`

D

`126 xx 10^(-24)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility product (Ksp) of `Sb2S3`, we can follow these steps: ### Step 1: Write the Dissociation Equation The dissociation of `Sb2S3` in water can be represented as: \[ \text{Sb}_2\text{S}_3 (s) \rightleftharpoons 2 \text{Sb}^{3+} (aq) + 3 \text{S}^{2-} (aq) \] ### Step 2: Define Molar Solubility Let the molar solubility of `Sb2S3` be \( s = 1.0 \times 10^{-5} \) mol/L. This means that at equilibrium: - The concentration of `Sb^{3+}` ions will be \( 2s \). - The concentration of `S^{2-}` ions will be \( 3s \). ### Step 3: Calculate Ion Concentrations Substituting \( s \) into the concentrations: - Concentration of `Sb^{3+}`: \[ [\text{Sb}^{3+}] = 2s = 2 \times (1.0 \times 10^{-5}) = 2.0 \times 10^{-5} \, \text{mol/L} \] - Concentration of `S^{2-}`: \[ [\text{S}^{2-}] = 3s = 3 \times (1.0 \times 10^{-5}) = 3.0 \times 10^{-5} \, \text{mol/L} \] ### Step 4: Write the Expression for Ksp The solubility product (Ksp) expression for the dissociation reaction is: \[ Ksp = [\text{Sb}^{3+}]^2 [\text{S}^{2-}]^3 \] ### Step 5: Substitute the Ion Concentrations into the Ksp Expression Substituting the values we calculated: \[ Ksp = (2.0 \times 10^{-5})^2 \times (3.0 \times 10^{-5})^3 \] ### Step 6: Calculate Ksp Calculating each part: - \( (2.0 \times 10^{-5})^2 = 4.0 \times 10^{-10} \) - \( (3.0 \times 10^{-5})^3 = 27.0 \times 10^{-15} = 2.7 \times 10^{-14} \) Now, multiply these results: \[ Ksp = 4.0 \times 10^{-10} \times 2.7 \times 10^{-14} = 1.08 \times 10^{-23} \] ### Final Answer Thus, the solubility product \( Ksp \) of `Sb2S3` is: \[ Ksp = 1.08 \times 10^{-23} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The solubility of Sb_(2)S_(3) in water is 1.0 xx 10^(-8) mol/litre at 298 K. What will be its solubility product:

The solubility of BaSO_(4) in water is 2.42xx10^(-3) gL^(-1) at 298 K . The value of its solubility product (K_(sp)) will be (Given molar mass of BaSO_(4)=233 g mol^(-1) )

The solubility of AgCl in water at 298 K is 1.06xx10^(-5) mle per litre. Calculate its solubility product at this temperature.

The solubility of a springly soluble salt AB_(2) in water is 1.0xx10^(-5) mol L^(-1) . Its solubility product is: