Home
Class 12
PHYSICS
Evaluate sin 120^(@)...

Evaluate `sin 120^(@)`

A

` (sqrt(3))/(4)`

B

` 1/sqrt(2)`

C

` 1/2`

D

` (sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sin 120^\circ \), we can follow these steps: ### Step 1: Rewrite \( 120^\circ \) We can express \( 120^\circ \) as: \[ 120^\circ = 90^\circ + 30^\circ \] ### Step 2: Use the sine addition formula Using the sine addition formula, we know that: \[ \sin(90^\circ + \theta) = \cos(\theta) \] where \( \theta = 30^\circ \). ### Step 3: Apply the formula Applying this to our angle: \[ \sin(120^\circ) = \sin(90^\circ + 30^\circ) = \cos(30^\circ) \] ### Step 4: Find \( \cos(30^\circ) \) Now we need to find the value of \( \cos(30^\circ) \): \[ \cos(30^\circ) = \frac{\sqrt{3}}{2} \] ### Step 5: Conclusion Thus, we can conclude that: \[ \sin(120^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2} \] ### Final Answer \[ \sin(120^\circ) = \frac{\sqrt{3}}{2} \] ---

To evaluate \( \sin 120^\circ \), we can follow these steps: ### Step 1: Rewrite \( 120^\circ \) We can express \( 120^\circ \) as: \[ 120^\circ = 90^\circ + 30^\circ \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin120^(@) .

Find the value of: sin120^(@)

Find the value of (sin 135^(@) - cos 120^(@))/(sin 135^(@) + cos 120^(@))

The value of sin 600^(@) cos 330^(@)+ cos 120^(@) sin 150^(@) is

Find the value of sin^(2)(120^(@)-A)+sin^(2)A+sin^(2)(120^(@)+A):

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: (sin 120^(@) - i cos 120^(@))

Find the value of the following : (a) sin 120^(@) (b) cos 135^(@) (c ) tan 150^(@)

The value of sin600^(@)cos330^(@)+cos120^(@)sin150^(@) is