Home
Class 12
PHYSICS
Evaluate: (d)/(dx)(x^(1//2))...

Evaluate:
`(d)/(dx)(x^(1//2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the derivative of the function \( y = x^{1/2} \), we will follow the steps of differentiation using the power rule. ### Step-by-Step Solution: 1. **Identify the function**: We have the function \( y = x^{1/2} \). 2. **Apply the power rule**: The power rule states that if \( y = x^n \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = n \cdot x^{n-1} \] In our case, \( n = \frac{1}{2} \). 3. **Differentiate**: Substitute \( n \) into the power rule: \[ \frac{dy}{dx} = \frac{1}{2} \cdot x^{\frac{1}{2} - 1} \] 4. **Simplify the exponent**: Calculate \( \frac{1}{2} - 1 \): \[ \frac{1}{2} - 1 = -\frac{1}{2} \] So we have: \[ \frac{dy}{dx} = \frac{1}{2} \cdot x^{-\frac{1}{2}} \] 5. **Rewrite the result**: The expression \( x^{-\frac{1}{2}} \) can be rewritten as \( \frac{1}{\sqrt{x}} \): \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \] ### Final Result: Thus, the derivative of \( y = x^{1/2} \) is: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \]

To evaluate the derivative of the function \( y = x^{1/2} \), we will follow the steps of differentiation using the power rule. ### Step-by-Step Solution: 1. **Identify the function**: We have the function \( y = x^{1/2} \). 2. **Apply the power rule**: The power rule states that if \( y = x^n \), then the derivative \( \frac{dy}{dx} \) is given by: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: (d)/(dx)(x^(1//5))

Evaluate: (d)/(dx)(3x^(2))

Evaluate: (d)/(dx)((1)/(x))

(d)/(dx)=(-2x^(2)) =

(d)/(dx)(x^((1)/(x)))

Evaluate: (d)/(dx)((1)/(x^(3)))

(d)/(dx)(x^((1)/(3)))=

(d)/(dx)(x^(x))=?

(d)/(dx)(3x^(2)+2x)=

(d)/(dx)(sec^(-1)x)