Home
Class 12
PHYSICS
Evaluate: (d)/(dx)(x^(1//5))...

Evaluate:
`(d)/(dx)(x^(1//5))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the derivative of the function \( y = x^{1/5} \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ y = x^{1/5} \] ### Step 2: Apply the power rule The power rule for differentiation states that if \( y = x^n \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = n \cdot x^{n-1} \] In our case, \( n = \frac{1}{5} \). ### Step 3: Differentiate the function Using the power rule: \[ \frac{dy}{dx} = \frac{1}{5} \cdot x^{\frac{1}{5} - 1} \] ### Step 4: Simplify the exponent Now we simplify the exponent: \[ \frac{1}{5} - 1 = \frac{1}{5} - \frac{5}{5} = -\frac{4}{5} \] Thus, we have: \[ \frac{dy}{dx} = \frac{1}{5} \cdot x^{-\frac{4}{5}} \] ### Step 5: Write the final answer The derivative of \( y = x^{1/5} \) is: \[ \frac{dy}{dx} = \frac{1}{5} x^{-\frac{4}{5}} \] ### Summary The final answer is: \[ \frac{dy}{dx} = \frac{1}{5} x^{-\frac{4}{5}} \] ---

To evaluate the derivative of the function \( y = x^{1/5} \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ y = x^{1/5} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: (d)/(dx)(x^(1//2))

Evaluate: (d)/(dx)(3x^(2))

Evaluate: (d)/(dx)((1)/(x))

(d)/(dx)(x^((1)/(x)))

(d)/(dx)sin(x^(x))

Evaluate: (d)/(dx)((1)/(x^(3)))

(d)/(dx)(x^((1)/(3)))=

(d)/(dx)(x^(x))=?

(d)/(dx)(sec^(-1)x)

Find the value of (d)/(dx)(x^(x))^(x)