Home
Class 12
PHYSICS
Find (dy)/(dx) if y=tanx....

Find `(dy)/(dx)` if `y=tanx`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \tan x\), we can use the quotient rule of differentiation. Here’s the step-by-step solution: ### Step 1: Rewrite \(\tan x\) We know that: \[ y = \tan x = \frac{\sin x}{\cos x} \] ### Step 2: Apply the Quotient Rule The quotient rule states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] In our case, \(u = \sin x\) and \(v = \cos x\). ### Step 3: Differentiate \(u\) and \(v\) Now we need to find \(\frac{du}{dx}\) and \(\frac{dv}{dx}\): - \(\frac{du}{dx} = \frac{d}{dx}(\sin x) = \cos x\) - \(\frac{dv}{dx} = \frac{d}{dx}(\cos x) = -\sin x\) ### Step 4: Substitute into the Quotient Rule Now substituting \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\) into the quotient rule formula: \[ \frac{dy}{dx} = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x} \] ### Step 5: Simplify the Expression This simplifies to: \[ \frac{dy}{dx} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \] ### Step 6: Use the Pythagorean Identity Using the Pythagorean identity, \(\sin^2 x + \cos^2 x = 1\), we can simplify further: \[ \frac{dy}{dx} = \frac{1}{\cos^2 x} \] ### Step 7: Write the Final Result Finally, we can express \(\frac{1}{\cos^2 x}\) as \(\sec^2 x\): \[ \frac{dy}{dx} = \sec^2 x \] ### Summary Thus, the derivative of \(y = \tan x\) is: \[ \frac{dy}{dx} = \sec^2 x \]

To find \(\frac{dy}{dx}\) for the function \(y = \tan x\), we can use the quotient rule of differentiation. Here’s the step-by-step solution: ### Step 1: Rewrite \(\tan x\) We know that: \[ y = \tan x = \frac{\sin x}{\cos x} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(tanx)^(cotx)

Find (dy)/(dx) , when: y=(tanx)^(1//x)

Find (dy)/(dx) if y^(x)=x^(y)

find dy/dx if y=5^x/tanx

Find (dy)/(dx) when : y=(x+tanx)/(tanx)

Find (dy)/(dx) , when: (tanx)^(y)=(tany)^(x)