Home
Class 12
PHYSICS
If f(x)=xcosx, find f''(x)....

If `f(x)=xcosx`, find `f''(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`x(d)/(dx)(cosx)+cosx(d)/(dx)(x)`

Using the Product Rule, we have
`f'(x)=x(d)/(dx)(cosx)+cosx(d)/(dx)(x)`
`=-xsinx+cosx`
To find `f''(x)` we differentiate f'(x) :
`f''(x)=(d)/(dx)(-xsinx+cosx)`
`=-x(d)/(dx)(sinx)+sinx(d)/(dx)(-x)+(d)/(dx)(cosx)`
`=-xcosx-sinx-sinx=-xcosx-2sinx`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = x cos x , find f' (x) .

if f(x)=xe^(x) find f'(x)

If f(x)=x+log|x|,x!=0 find f'(x)

If f(x)=(x-1)/(x+1), find f(2x) in terms of f(x)

If f((ax+b)/(x-a))=x, find f(x) Also find f^-1(x) .

If f(x)=x-9 ,then find f(x)-f(-x)

If f'(x)=k(cos x-sin x),f'(0)=3 and f((pi)/(2)) find f'(x)

If f(x)=sqrt(sinx)," find "f^(')(x) .

If f is defined by f(x)=x^(2), find f'(2)

If f is defined by f(x)=x^(2), find f'(2)