Home
Class 12
PHYSICS
Find the minimum and maximum values of t...

Find the minimum and maximum values of the funciton `y=x^3-3x^2+6`. Also find the values of x at which these occur.

Text Solution

Verified by Experts

The correct Answer is:
2

`(dy)/(dx)=3x^(2)-6x`
For maximum or minimum values of the function, `(dy)/(dx)=0`
`therefore 3x^(2)-6x=0implies3x(x-2)=0`
or, `x=0andx=2`
Now, `(d^(2)y)/(dx^(2))=6x-6`
At `x=0, (d^(2)y)/(dx^(2))=-6lt0` (Maxima)
`therefore y_(max)=(0)^(3)-3(0)^(2)+6=6`
At `x=2,(d^(2)y)/(dx^(2))=12-6=6gt0` (Minima)
`therefore y_(min)=2^(3)-3(2)^(2)+6=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function y=4x^3-3x^2-6x+1

Find the minimum and maximum values of sin2x-cos2x

Find the minimum and maximum values of 3cos x+4sin x

Find the maximum and minimum values of the function y=4x^3 -15x^2 +12x – 2

Find the maximum or minimum values of the function. y=9-(x-3)^(2)

Find the maximum and minimum values of function 2x^(3)-15x^(2)+36+11

Find the maximum value of the function 1//(x^(2)-3x+2) .

Find the maximum and the minimum value of the function y=x^(3)+6x^(2)-15x+5

Find the maximum and minimum values of the function y=x^(3) , "in" x in [-2,3] ?

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.