Home
Class 12
PHYSICS
Integrate the following : intcos.(x)/(...

Integrate the following :
`intcos.(x)/(2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos x}{2} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We can factor out the constant \(\frac{1}{2}\) from the integral: \[ \int \frac{\cos x}{2} \, dx = \frac{1}{2} \int \cos x \, dx \] ### Step 2: Integrate \(\cos x\) The integral of \(\cos x\) is a standard result: \[ \int \cos x \, dx = \sin x + C \] where \(C\) is the constant of integration. ### Step 3: Substitute Back Now, we substitute the result of the integral back into our expression: \[ \frac{1}{2} \int \cos x \, dx = \frac{1}{2} (\sin x + C) \] ### Step 4: Simplify Distributing \(\frac{1}{2}\): \[ \frac{1}{2} \sin x + \frac{1}{2} C \] Since \(\frac{1}{2} C\) is still a constant, we can denote it as \(C'\) (where \(C' = \frac{1}{2} C\)): \[ \frac{1}{2} \sin x + C' \] ### Final Answer Thus, the integral \(\int \frac{\cos x}{2} \, dx\) evaluates to: \[ \frac{1}{2} \sin x + C \]

To solve the integral \(\int \frac{\cos x}{2} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We can factor out the constant \(\frac{1}{2}\) from the integral: \[ \int \frac{\cos x}{2} \, dx = \frac{1}{2} \int \cos x \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Integrate the following : intcos^(2) theta d theta

Integrate the following : (ii) int(8+x)dx.

Integrate the following (1) intx^(-3/2)dx (2) intsin60^(@)dx (3) int(1)/(10x)dx (4) int(2x^(3)-x^(2)+1)dx

Integrate the following : int x sinx dx .

Integrate the following integrals (i) int(dx)/(sqrt(5x^(2)-2x)) (ii) int(1)/(sqrt(2ax-x^(2)))dx

Integrate the following: int(sin2x)/sqrt(1+cos^2x)dx

Integrate the following : int(sin 6x+cos 5x+sec^(2)x)dx

Integrate the following intsqrt(x+sqrt(x^2+a^2))dx

Integrate the following integral, I=int(4x+1)/(x^(2)+3x+2)dx

Integrate the following function: (1-x^(2))/(1+x^(2))(dx)/((1+x^(4))^((1)/(2)))