Home
Class 12
PHYSICS
We can sometimes use trigonometric ident...

We can sometimes use trigonometric identities to transform integrals. The integral formulas for `sin^(2)x and cos^(2)x` arise frequently in applications. Evaluate:
`intsin^(2)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral of \( \sin^2 x \, dx \), we can use a trigonometric identity to simplify the expression. The relevant identity is: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] ### Step 1: Substitute the Identity We start by substituting the identity into the integral: \[ \int \sin^2 x \, dx = \int \frac{1 - \cos(2x)}{2} \, dx \] ### Step 2: Simplify the Integral Now, we can simplify the integral: \[ \int \sin^2 x \, dx = \frac{1}{2} \int (1 - \cos(2x)) \, dx \] ### Step 3: Split the Integral Next, we can split the integral into two separate integrals: \[ \int \sin^2 x \, dx = \frac{1}{2} \left( \int 1 \, dx - \int \cos(2x) \, dx \right) \] ### Step 4: Evaluate Each Integral Now we evaluate each integral separately: 1. The integral of \( 1 \, dx \) is simply \( x \). 2. The integral of \( \cos(2x) \, dx \) can be evaluated using the substitution method. The integral is: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] ### Step 5: Combine the Results Now we can combine the results from the two integrals: \[ \int \sin^2 x \, dx = \frac{1}{2} \left( x - \frac{1}{2} \sin(2x) \right) + C \] ### Step 6: Simplify the Expression Finally, we can simplify the expression: \[ \int \sin^2 x \, dx = \frac{x}{2} - \frac{1}{4} \sin(2x) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \sin^2 x \, dx = \frac{x}{2} - \frac{1}{4} \sin(2x) + C \]

To evaluate the integral of \( \sin^2 x \, dx \), we can use a trigonometric identity to simplify the expression. The relevant identity is: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] ### Step 1: Substitute the Identity We start by substituting the identity into the integral: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

We can sometimes use trigonometric identities to transform integrals. The integral formulas for sin^(2)x and cos^(2)x arise frequently in applications. Evaluate: intcos^(2)xdx

intsin^(2)x.cos^(2)xdx=

intsin^(3)x.cos^(2)xdx is equal to

Solve intsin2x.sin3xdx

intsin^(2)xdx-(x)/(2)=

Integration of sin^(^^)2x or cos^(^^)2x in diffrent range

Integration of trigonometric and hyperbolic functions Find the integrals of tan x and cot x.

Integrate the integrals: int sin x cos2x sin3xdx

Integrate the following w.r.t.x. (sin 2x)/(a sin^(2)x+b cos^(2)x)

Evaluate the following integrals: int ( cos 2x+2sin^(2)x)/(cos^(2)x) dx