Home
Class 12
PHYSICS
Evaluate: int(-1)^(4)3dx...

Evaluate:
`int_(-1)^(4)3dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-1}^{4} 3 \, dx \), we will follow these steps: ### Step 1: Identify the integral The integral we need to evaluate is: \[ \int_{-1}^{4} 3 \, dx \] ### Step 2: Factor out the constant Since \( 3 \) is a constant, we can factor it out of the integral: \[ = 3 \int_{-1}^{4} dx \] ### Step 3: Evaluate the integral of \( dx \) The integral of \( dx \) over the interval from \(-1\) to \(4\) is simply the length of the interval: \[ \int_{-1}^{4} dx = x \bigg|_{-1}^{4} = 4 - (-1) = 4 + 1 = 5 \] ### Step 4: Multiply by the constant Now we multiply the result of the integral by the constant we factored out: \[ 3 \cdot 5 = 15 \] ### Final Result Thus, the value of the integral \( \int_{-1}^{4} 3 \, dx \) is: \[ \boxed{15} \] ---

To evaluate the integral \( \int_{-1}^{4} 3 \, dx \), we will follow these steps: ### Step 1: Identify the integral The integral we need to evaluate is: \[ \int_{-1}^{4} 3 \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

Evaluate int_(1)^(4)3x^2dx

Evaluate : int_(1)^(4) x^3 dx

Evaluate : int_(1)^(4)(dx)/(sqrt(x))

Evaluate int_(1)^(3)x^(3)dx

Evaluate int_(1)^(4)(dx)/(root(3)(x))

Evaluate: int_(-1)^(1)x^(3)(x^(4)+1)^(3)dx

Evaluate: int(1)/(x^(4)+3x^(2)+1)dx

Evaluate: int_(-1)^(3//2)|xsinpix|dx

Evaluate: int(1)/(x^(4)+1)dx