Home
Class 12
PHYSICS
Evaluate: int(0)^(pi//2)sinxdx...

Evaluate:
`int_(0)^(pi//2)sinxdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \), we will follow these steps: ### Step 1: Identify the Integral We need to evaluate the definite integral of the function \( \sin x \) from \( 0 \) to \( \frac{\pi}{2} \). ### Step 2: Find the Antiderivative The first step in evaluating the integral is to find the antiderivative of \( \sin x \). The antiderivative of \( \sin x \) is: \[ -\cos x \] ### Step 3: Apply the Limits of Integration Now, we will apply the limits of integration from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \left[-\cos x\right]_{0}^{\frac{\pi}{2}} \] ### Step 4: Evaluate at the Upper Limit Now, we will evaluate the antiderivative at the upper limit \( \frac{\pi}{2} \): \[ -\cos\left(\frac{\pi}{2}\right) = -0 = 0 \] ### Step 5: Evaluate at the Lower Limit Next, we will evaluate the antiderivative at the lower limit \( 0 \): \[ -\cos(0) = -1 \] ### Step 6: Subtract the Two Results Now, we subtract the value at the lower limit from the value at the upper limit: \[ 0 - (-1) = 0 + 1 = 1 \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1 \] ---

To evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \), we will follow these steps: ### Step 1: Identify the Integral We need to evaluate the definite integral of the function \( \sin x \) from \( 0 \) to \( \frac{\pi}{2} \). ### Step 2: Find the Antiderivative The first step in evaluating the integral is to find the antiderivative of \( \sin x \). The antiderivative of \( \sin x \) is: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi//2)lnsin2xdx

int_(0)^(pi//4)x^(2)sinxdx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate: int_(0)^( pi/2)x sin xdx

Evaluate: int_(0)^( pi/2)x sin xdx

Evaluate: int_(0)^( pi/2)sin^(4)xdx

Evaluate : int_(0)^(pi//2)sin^(8)xdx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

int_0^(pi/2) x^2sinxdx

Evaluate : int_(0)^( pi/2)e^(sin x )*cos xdx