Home
Class 12
PHYSICS
Evaluate: int(1)^(2)(3x^(2)+2x+1)dx...

Evaluate: `int_(1)^(2)(3x^(2)+2x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the definite integral of the polynomial \( 3x^{2} + 2x + 1 \) from 1 to 2. ### Step 2: Find the antiderivative To find the antiderivative of \( 3x^{2} + 2x + 1 \), we integrate each term separately: - The integral of \( 3x^{2} \) is \( x^{3} \) (since \( \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \)). - The integral of \( 2x \) is \( x^{2} \). - The integral of \( 1 \) is \( x \). Thus, the antiderivative of \( 3x^{2} + 2x + 1 \) is: \[ x^{3} + x^{2} + x + C \] ### Step 3: Evaluate the definite integral Now we evaluate the definite integral from 1 to 2: \[ \int_{1}^{2} (3x^{2} + 2x + 1) \, dx = \left[ x^{3} + x^{2} + x \right]_{1}^{2} \] ### Step 4: Substitute the limits Now we substitute the upper limit (2) and the lower limit (1) into the antiderivative: 1. For the upper limit (2): \[ (2^{3} + 2^{2} + 2) = 8 + 4 + 2 = 14 \] 2. For the lower limit (1): \[ (1^{3} + 1^{2} + 1) = 1 + 1 + 1 = 3 \] ### Step 5: Calculate the result Now we subtract the value at the lower limit from the value at the upper limit: \[ 14 - 3 = 11 \] ### Final Answer The value of the integral \( \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \) is \( 11 \). ---

To evaluate the integral \( \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the definite integral of the polynomial \( 3x^{2} + 2x + 1 \) from 1 to 2. ### Step 2: Find the antiderivative To find the antiderivative of \( 3x^{2} + 2x + 1 \), we integrate each term separately: - The integral of \( 3x^{2} \) is \( x^{3} \) (since \( \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \)). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(1)^(2)(3x^2+1)dx

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate int_(1)^(3)(3x^(2)+1)dx

Evaluate int_(0)^(1)(3x^(2)+2x+1)dx as limit of the sum.

Evaluate int_(1)^(3)|x^(2)-2x|dx

Evaluate int_(-1)^(1)(3x^2+5)dx

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx

int_(1)^(2)(3x)/(9x^(2)-1)dx

Evaluate int_(0)^(1)(2-3x+x^2)dx