Home
Class 12
PHYSICS
Evaluate: underset(0)overset(pi//4)intsi...

Evaluate: `underset(0)overset(pi//4)intsinxdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_0^{\frac{\pi}{4}} \sin x \, dx\), we will follow these steps: ### Step 1: Set up the integral We need to evaluate the definite integral of \(\sin x\) from \(0\) to \(\frac{\pi}{4}\): \[ \int_0^{\frac{\pi}{4}} \sin x \, dx \] ### Step 2: Find the indefinite integral of \(\sin x\) The integral of \(\sin x\) is: \[ -\cos x + C \] where \(C\) is the constant of integration. ### Step 3: Apply the limits of integration Now, we will evaluate the definite integral by applying the limits \(0\) and \(\frac{\pi}{4}\): \[ \left[-\cos x\right]_0^{\frac{\pi}{4}} = -\cos\left(\frac{\pi}{4}\right) - \left(-\cos(0)\right) \] ### Step 4: Calculate \(\cos\left(\frac{\pi}{4}\right)\) and \(\cos(0)\) We know that: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \quad \text{and} \quad \cos(0) = 1 \] ### Step 5: Substitute the values into the expression Substituting these values back into the expression, we get: \[ -\left(\frac{1}{\sqrt{2}}\right) + 1 = 1 - \frac{1}{\sqrt{2}} \] ### Step 6: Simplify the expression To simplify \(1 - \frac{1}{\sqrt{2}}\), we can convert \(1\) into a fraction with a common denominator: \[ 1 = \frac{\sqrt{2}}{\sqrt{2}} \quad \Rightarrow \quad 1 - \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}} \] ### Final Answer Thus, the value of the integral \(\int_0^{\frac{\pi}{4}} \sin x \, dx\) is: \[ \frac{\sqrt{2} - 1}{\sqrt{2}} \]

To evaluate the integral \(\int_0^{\frac{\pi}{4}} \sin x \, dx\), we will follow these steps: ### Step 1: Set up the integral We need to evaluate the definite integral of \(\sin x\) from \(0\) to \(\frac{\pi}{4}\): \[ \int_0^{\frac{\pi}{4}} \sin x \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following definite integrals underset(0)overset(pi//2)intsin^(2)xdx

Evaluate the following definite integrals underset(0)overset(pi//2)int(1+sinx)^(3)cosxdx

Let I= underset(pi//4)overset(pi//3)int (sinx)/x dx , then I belongs to

Evaluate the following definite integrals underset(0)overset(pi//4)int(dx)/(1+cos2x)

Evaluate the following definite integrals underset(0)overset(pi//4)inttan^(3)x.sec^(2)xdx

The value of int underset(0)overset(pi) xsin^(3)xdx is

Evaluate the following definite integrals underset(pi//6)overset(pi//3)intcot^(2)xdx

Evaluate the following definite integrals underset(0)overset(1//2)intsqrt(19+4x)dx

Evaluate : overset2underset0int