Home
Class 12
PHYSICS
Figure shows a parallelogram ABCD. Prove...

Figure shows a parallelogram ABCD. Prove that `vec(AC)+ vec (BD) = 2 vec(BC)`'

Text Solution

Verified by Experts

The correct Answer is:
`2vec(BC)`

`vec(AC)=vec(AB)+vec(BC)`
`vec(BD)=vec(BC)+vec(CD)` [applying triangle law of vectors]
Now `vec(AC)+vec(BD)=vec(AB)+vec(BC)+vec(BC)+vec(CD)=vec(AB)+2vec(BC)+vec(CD)`
But `vec(CD)=-vec(AB) therefore vec(AC)+vec(BD)=vec(AB)+2vec(BC)-vec(AB)=2vec(BC)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

In the parallelogram ABCD,vec AC^(2)-vec BD^(2)=

The given figure shows a quadrilateral ABCD. Prove that : AB+BC+CD+DA gt AC+BD

ABCD is a parallelogram and AC, BD are its diagonals. Show that : vec(AC)+vec(BD)=2vec(BC), vec(AC)-vec(BD)=2vec(AB) .

E and F are the interior points on the sides BC and CD of a parallelogram ABCD. Let vec(BE)=4vec(EC) and vec(CF)=4vec(FD) . If the line EF meets the diagonal AC in G, then vec(AG)=lambda vec(AC) , where lambda is equal to :

If vec a and vec b represent two adjacent sides vec AB and vec BC respectively of a parallelogram ABCD, then show that its diagonals vec AC and vec DB are equal to vec a+vec b and vec a-vec b respectively.

ABCD is a parallelogram Fig. 2 (c ) .64. AC and (BD) are its diagonals. Show that (a) vec (AC) +vec (BD) =2 vec (BC) (b) vec (AC) - vec (BD) =2 vec (AB) .

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?