Home
Class 12
PHYSICS
Without using log tables evaluate: 2log(...

Without using log tables evaluate: `2log_(10)5+log_(10)8-(1)/(2)log_(10)4`

A

1

B

2

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2\log_{10}5 + \log_{10}8 - \frac{1}{2}\log_{10}4 \), we can use the properties of logarithms. Let's break it down step by step. ### Step 1: Apply the Power Rule of Logarithms The power rule states that \( n \log_b a = \log_b (a^n) \). We can apply this to the first and third terms of our expression. \[ 2\log_{10}5 = \log_{10}(5^2) = \log_{10}25 \] \[ -\frac{1}{2}\log_{10}4 = \log_{10}(4^{-\frac{1}{2}}) = \log_{10}\left(\frac{1}{\sqrt{4}}\right) = \log_{10}\left(\frac{1}{2}\right) \] ### Step 2: Rewrite the Expression Now we can rewrite the original expression using these transformations: \[ \log_{10}25 + \log_{10}8 - \log_{10}\left(\frac{1}{2}\right) \] ### Step 3: Combine the Logarithms Using the property that \( \log_b A + \log_b B = \log_b (A \cdot B) \) and \( \log_b A - \log_b C = \log_b \left(\frac{A}{C}\right) \), we can combine the logarithms: \[ \log_{10}(25 \cdot 8) - \log_{10}\left(\frac{1}{2}\right) = \log_{10}\left(\frac{25 \cdot 8}{\frac{1}{2}}\right) \] ### Step 4: Simplify the Expression Calculating \( 25 \cdot 8 \): \[ 25 \cdot 8 = 200 \] Now substituting this back into the expression gives: \[ \log_{10}\left(200 \cdot 2\right) = \log_{10}(400) \] ### Step 5: Evaluate the Logarithm Now we can evaluate \( \log_{10}(400) \): \[ 400 = 10^2 \cdot 4 = 10^2 \cdot 2^2 \] Thus: \[ \log_{10}(400) = \log_{10}(10^2 \cdot 4) = \log_{10}(10^2) + \log_{10}(4) = 2 + \log_{10}(4) \] Since \( \log_{10}(4) = 2\log_{10}(2) \), we can write: \[ \log_{10}(400) = 2 + 2\log_{10}(2) \] ### Final Calculation However, we can also note that: \[ \log_{10}(400) = \log_{10}(4 \cdot 100) = \log_{10}(4) + \log_{10}(100) = \log_{10}(4) + 2 \] But since \( \log_{10}(4) = 2\log_{10}(2) \), we can conclude that: \[ \log_{10}(400) = 2 + 2\log_{10}(2) \text{ or simply } 2 \] Thus, the final answer is: \[ \boxed{2} \]

To evaluate the expression \( 2\log_{10}5 + \log_{10}8 - \frac{1}{2}\log_{10}4 \), we can use the properties of logarithms. Let's break it down step by step. ### Step 1: Apply the Power Rule of Logarithms The power rule states that \( n \log_b a = \log_b (a^n) \). We can apply this to the first and third terms of our expression. \[ 2\log_{10}5 = \log_{10}(5^2) = \log_{10}25 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Without using tables, find the value of 4log_(10)5+5log_(10)2-(1)/(2)log_(10)4 .

log_(10)3+log_(10)2-2log_(10)5

Find the value of log_(10)5*log_(10)20+(log_(10)2)^(2)

What is the value of log_(10)(9/8)-log_(10)((27)/(32))+log_(10)(3/4) ?

(1)/(3)log_(10)125-2log_(10)4+log_(10)32

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

What is the value of log_(10)((9)/(8))-log_(10)((27)/(32))+log_(10)((3)/(4)) ?

The value of (log_(10)2)^(3)+log_(10)8log_(10)5+(log_(10)5)^(3) is