Home
Class 12
PHYSICS
intsec^(4)xdx=...

`intsec^(4)xdx=`

Text Solution

Verified by Experts

`tanx=zimpliessec^(2)x.dx=dz`
`therefore int(1+z^(2))dz=(z+(z^(3))/(3)+C)=(tan^(3)x)/(3)+tanx+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

int sec^(4)xdx

intsec^(-1)xdx=

intsec^(3)xdx=?

intsec^(4) x dx

"int sec^(4)xdx

Evaluate: int sec^(4)xdx

Evaluate the following integrals: intsec^(4)dx

int cosec^(4)xdx

Evaluate: (i) int sec^(4)2xdx (ii) int cos ec^(4)3xdx

Evaluate: (i) int tan^(n)x sec^(2)xdx (ii) int tan^(2)x sec^(4)xdx( iii) int sec^(4)xdx