Home
Class 12
PHYSICS
If y=x^(4), find (d^(2)y)/(dx^(2))and(d^...

If `y=x^(4)`, find `(d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3))`.

Text Solution

AI Generated Solution

To solve the problem of finding the second and third derivatives of the function \( y = x^4 \), we will follow these steps: ### Step 1: Find the First Derivative The first derivative of \( y \) with respect to \( x \) is given by the power rule of differentiation. According to the power rule, if \( y = x^n \), then: \[ \frac{dy}{dx} = n \cdot x^{n-1} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x) find d^(2)(y)/(dx^(2))

If y=x^(5) ,then find (d^(3)y)/(dx^(3))

If y=|x-x^(2)|, then find (d^(2)y)/(dx^(2))

If y=e^(4x) sin 3x , find (d^(2)y)/(dx^(2)).

y=x^(3)-4x^(2)+5 . Find (dy)/(dx) , (d^(2) y)/(dx^(2)) and (d^(3)y)/(dx^(3)) .

If (d^2y)/(dx^(2))=xe^x then (d^(3)y)/(dx^(3)) =.....

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=