Home
Class 12
PHYSICS
Evaluate the following definite integral...

Evaluate the following definite integrals
`underset(pi//6)overset(pi//3)intcot^(2)xdx`

Text Solution

AI Generated Solution

To evaluate the definite integral \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cot^2 x \, dx\), we will follow these steps: ### Step 1: Rewrite the integrand We know that \(\cot^2 x = \frac{\cos^2 x}{\sin^2 x}\). Therefore, we can rewrite the integral as: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cot^2 x \, dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^2 x}{\sin^2 x} \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following definite integrals underset(0)overset(pi//2)intsin^(2)xdx

Evaluate the following definite integrals underset(0)overset(pi//4)int(dx)/(1+cos2x)

Evaluate the following definite integrals underset(0)overset(pi//4)inttan^(3)x.sec^(2)xdx

Evaluate the following definite integrals underset(0)overset(pi//2)int(1+sinx)^(3)cosxdx

Evaluate the following definite integrals underset(0)overset(1//2)intsqrt(19+4x)dx

Evaluate the following definite integrals underset(0)overset(a)int(x)/(sqrt(a^(2)+x^(2)))dx

Evaluate the following definite integrals underset(0)overset(1)int(dx)/(sqrt(1-x^(2)))

Evaluate the following definite integral: int_(0)^( pi/4)sex xdx

Evaluate the following definite integral: int_(pi/4)^( pi/2)cot xdx

Evaluate the following definite integral: int_(0)^( pi/2)cos^(3)xdx