Home
Class 12
PHYSICS
Given : vecP=vecA+vecBandvecQ=vecA-vecB....

Given : `vecP=vecA+vecBandvecQ=vecA-vecB`. If the magnitudes of vectors `vecP and vecQ` are equal, what is the angle between vectors `vecAandvecB`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between vectors \(\vec{A}\) and \(\vec{B}\) given that the magnitudes of vectors \(\vec{P}\) and \(\vec{Q}\) are equal. We start with the definitions of the vectors: 1. **Define the vectors**: \[ \vec{P} = \vec{A} + \vec{B} \] \[ \vec{Q} = \vec{A} - \vec{B} \] 2. **Set up the equation for magnitudes**: Since the magnitudes of \(\vec{P}\) and \(\vec{Q}\) are equal, we can write: \[ |\vec{P}| = |\vec{Q}| \] 3. **Express the magnitudes**: The magnitude of \(\vec{P}\) is given by: \[ |\vec{P}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] where \(\theta\) is the angle between \(\vec{A}\) and \(\vec{B}\). Similarly, the magnitude of \(\vec{Q}\) is: \[ |\vec{Q}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos \theta} \] 4. **Set the magnitudes equal**: Since \(|\vec{P}| = |\vec{Q}|\), we have: \[ \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos \theta} \] 5. **Square both sides to eliminate the square roots**: \[ |\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta = |\vec{A}|^2 + |\vec{B}|^2 - 2 |\vec{A}| |\vec{B}| \cos \theta \] 6. **Simplify the equation**: Cancel out \(|\vec{A}|^2 + |\vec{B}|^2\) from both sides: \[ 2 |\vec{A}| |\vec{B}| \cos \theta = -2 |\vec{A}| |\vec{B}| \cos \theta \] 7. **Combine like terms**: \[ 2 |\vec{A}| |\vec{B}| \cos \theta + 2 |\vec{A}| |\vec{B}| \cos \theta = 0 \] This simplifies to: \[ 4 |\vec{A}| |\vec{B}| \cos \theta = 0 \] 8. **Solve for \(\cos \theta\)**: Since \( |\vec{A}| \) and \( |\vec{B}| \) are not zero, we can divide by \(4 |\vec{A}| |\vec{B}|\): \[ \cos \theta = 0 \] 9. **Determine the angle**: The angle \(\theta\) for which \(\cos \theta = 0\) is: \[ \theta = 90^\circ \] Thus, the angle between vectors \(\vec{A}\) and \(\vec{B}\) is \(90^\circ\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between vector (vecA) and (vecA-vecB) is :

If |vecP + vecQ|= | vecP| -|vecQ| , the angle between the vectors vecP and vecQ is

if |vecP + vecQ| = |vecP| + |vecQ| , the angle between the vectors vecP and vecQ is

If vecP -vecQ - vecR=0 and the magnitudes of vecP, vecQ and vecR are 5 , 4 and 3 units respectively, the angle between vecP and vecR is

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

The vector vecA and vecB are such that |vecA+vecB|=|vecA-vecB| . The angle between vectors vecA and vecB is -

Magnitude of resultant of two vectors vecP and vecQ is equal to magnitude of vecP . Find the angle between vecQ and resultant of vec2P and vecQ .

The vector veca+vecb bisects the angle between the non-collinear vectors vecaandvecb , if……..

If |veca+vecb|=|veca-vecb| , then the vectors vecaandvecb are orthogonal

If vecP.vecQ=PQ then angle between vecP and vecQ is